====== Programming with Redberry ======
Next topic: [[documentation:guide:notes_on_internal_architecture]]
---- =====Basics===== Redberry interface is written in [[http://groovy.codehaus.org|Groovy]] and is intended to be used within the Groovy environment. Groovy is a general-purpose programming language and one can use all features and programming language constructs that are available in Groovy: looping, branching, functions, lambda-expressions, lists, classes etc. Besides, Redberry provides a specialized domain-specific programming constructs which are useful for computer algebra purposes. The documentation on general programming constructs can be found on Groovy website. The most useful things are: * Looping: [[http://groovy.codehaus.org/Looping|http://groovy.codehaus.org/Looping]] * Branching: [[http://groovy.codehaus.org/Logical+Branching|http://groovy.codehaus.org/Logical+Branching]] * Collections: * Overview: [[http://groovy.codehaus.org/Collections|http://groovy.codehaus.org/Collections]] * Detailed examples: [[http://groovy.codehaus.org/JN1015-Collections|http://groovy.codehaus.org/JN1015-Collections]] * Functions: [[http://groovy.codehaus.org/Closures|http://groovy.codehaus.org/Closures]] * Strings: [[http://groovy.codehaus.org/JN1525-Strings|http://groovy.codehaus.org/JN1525-Strings]] One can find a comprehensive documentation on other Groovy features on [[http://groovy.codehaus.org|Groovy website]]. =====Examples===== Let us consider some applications of Redberry that involve programming. ====Basic constructs==== Consider some basic programming constructs: === • Looping=== Loop over expression (or list/set/array etc.): def t = 'a + b + c'.t for(def a in t) println a //or equivalently for(int i=0; i < t.size(); ++i) println t[i] //one more way t.each { a-> println a } //using while def i =0 while(i < t.size()){ println t[i++] } For further details see Groovy documentation: * Looping: [[http://groovy.codehaus.org/Looping|http://groovy.codehaus.org/Looping]] * Collections: * Overview: [[http://groovy.codehaus.org/Collections|http://groovy.codehaus.org/Collections]] * Detailed examples: [[http://groovy.codehaus.org/JN1015-Collections|http://groovy.codehaus.org/JN1015-Collections]] === • Logical branching=== Typical if-else statement: def t = 'a + b + c'.t if( t.size() > 3){ //do something } else if (t.size() == 3){ //do something else } else{ //do something else else } It is important to note, that in order to compare tensors, one should use ''.equals()'' method instead of ''=='' operator (this issue will be fixed in Groovy 3.0 and one can use ''=='' for comparison everywhere): def expr1 = 'a_i + b_i + c_i'.t def expr2 = 'a_j + b_j + c_j'.t if ( expr1.equals(expr2) ){ //somth } For further details see Groovy documentation: * Branching: [[http://groovy.codehaus.org/Logical+Branching|http://groovy.codehaus.org/Logical+Branching]] === • Functions === Inside a Groovy script one can define function using closure: def pow3 = { x -> x**3 } println pow3(3) //gives 27 def max = { x, y -> x > y ? x : y } println max(2, 3) //gives 3 The last statement inside a closure is automatically considered as return statement. In Redberry a function that transform expression to another expression is a [[documentation:ref:Transformation]]. In order to convert a closure to a transformation one can do: def tr = { expr -> //invert indices (expr.indices % expr.indices.inverted) >> expr } as Transformation println tr >> 't_ab'.t // gives t^ab //use & to join transformation println((EliminateMetrics & tr) >> 'g^ab*t_ac'.t) //gives t_b^c For further details see Groovy documentation: * Functions: [[http://groovy.codehaus.org/Closures|http://groovy.codehaus.org/Closures]] === • Iterables=== Lists and expressions are //iterable//, which means that one can use for example '' .each { } '' in order to iterate over expression elements. Additionally, there are some other useful methods that allow to iterate over a list (or expression) and select elements: def t = 'a_i + b_i+ c_i'.t t.eachWithIndex { e, i -> println "$i: $e" } // gives 0: a_i 1: b_i 2: c_i println t.collect { 2 * it } // gives [2*a_i, 2*b_i, 2*c_i] println t.find { (it % 'a_k'.t).first != null } // gives a_i println t.findAll { it.indices.lower.size() < 2 } // gives [a_i, b_i, c_i] To convert a list to [[documentation:ref:Sum]] or [[documentation:ref:Product]] one can use ''.sum()'' or ''.multiply()'' methods: // gives a_i + b_i + c_i println t.findAll( { it.indices.lower.size() < 2 } ).sum() For further details see Groovy documentation: * Collections: [[http://groovy.codehaus.org/JN1015-Collections|http://groovy.codehaus.org/JN1015-Collections]] ====Toy example==== Let us consider function that selects all elements with size less than ''n'' from [[documentation:ref:Sum]] and write them to list: def trunc = { expr, n -> //if expr is not Sum --- return empty List if (expr.class != Sum) return [] //resulting list def r = [] //loop over summands for (def s in expr) { //check summand size if (s.class == Product && s.size() >= n) continue; r << s } return r } println trunc('a + a*b + a*b*c + a*b*c*d'.t, 3) > [a, a*b] println trunc('a + a*b + a*b*c + a*b*c*d'.t, 4) > [a, a*b, a*b*c] The for-loop at lines 8-13 can be rewritten equivalently using ''each'' [[http://groovy.codehaus.org/Closures|closure]]: expr.each { s -> //check summand size if (s.class != Product || s.size() < n) r << s } Convert resulting list to a new [[documentation:ref:Sum]]: def selected = trunc('a + a*b + a*b*c + a*b*c*d'.t, 4) def newSum = selected.sum() println newSum > a + a*b + a*b*c Implement Redberry [[documentation:ref:Transformation]] that removes all elements with size greater or equals than ''4'' from [[documentation:ref:Sum]]: //transformation that removes elements from sum with size >=4 def truncTr4 = { expr -> expr.class == Sum ? trunc(expr, 4).sum() : expr } as Transformation //apply transformation using >> println truncTr4 >> 'a + a*b + a*b*c + a*b*c*d'.t > a + a*b + a*b*c Here we omitted the ''return'' keyword at line 24. Let us generalise [[documentation:ref:Transformation]] ''truncTr4'' to work with arbitrary ''n'': //transformation that removes elements from sum with size >=n def truncTr = { n -> { expr -> expr.class == Sum ? trunc(expr, n).sum() : expr } as Transformation } //apply transformation using >> println truncTr(4) >> 'a + a*b + a*b*c + a*b*c*d'.t > a + a*b + a*b*c [[documentation:ref:Transformation]] ''truncTr'' will apply only to the top algebraic level. In order to implement [[documentation:ref:Transformation]] that will change all sums in expression, one can use [[Tree traversal]]: //transformation that applies to each part of expression def truncAll = { n -> { expr -> expr.transformParentAfterChild { e -> e.class == Sum ? truncTr(n) >> e : e } } as Transformation } //this will do nothing println truncTr(4) >> 'x*(a + a*b + a*b*c + a*b*c*d)'.t > x*(a + a*b + a*b*c + a*b*c*d) //this will be applied println truncAll(4) >> 'x*(a + a*b + a*b*c + a*b*c*d)'.t > x*(a + a*b + a*b*c) ====Advanced example: Fourier transform of Lagrangian==== Let us write a function that performs Fourier transform of Langrangian. So, for example: \[ \int d^4 x\left( -\frac{1}{4}\left(\partial_\mu A_\nu (x) - \partial_\nu A_\mu (x)\right)^2 \right)= \int d^4 p\left( \frac{1}{2}A_\mu(p) \left(g^{\mu\nu} p^2 - p^\mu p^\nu \right) A_\nu(-p) \right) \] Let's implement Redberry [[documentation:ref:Transformation]] that transforms l.h.s. integrand to r.h.s integrand. Obviously this transformation will separately transform each term in Lagrangian. So, let's first implement Fourier transform of a single [[documentation:ref:product]]. For simplicity we assume that we have only one field. The algorithm sequentially goes through [[documentation:ref:product]] multipliers; for each field (e.g. $\partial_{a}\partial_{b} A_c(x_a)$) it generates a new momentum (e.g. $p2_a$) and replaces field argument with momentum and partial derivatives with products of momentum (e.g. $\partial_{a}\partial_{b} A_c(x_a) \to i \times p2_a \times i \times p2_b \times A_c(p_a)$). The last generated momentum should be replaced with negated sum of all other momentums (e.g. $p3_i \to -p0_i - p1_i -p2_i$). Here's the implementation: //transform product of tensors def fourierProduct = { product -> //list of generated momentums def momentums = [] //the result def result = product.builder //counter of momentums def i = 0 //let's transform each term in product for (def term in product) { //transform those terms that are functions if (term.class == TensorField) { //generate next momentum def momentum = "p${i++}".t momentums << momentum //replace function argument with momentum // (e.g. f~(2)_{a bc}[x_a] -> f~(2)_{a bc}[p_a]) term = "${term[0]} = $momentum${term[0].indices}".t >> term //in case of derivative we need // to replace partials with momentums if (term.isDerivative()) { //indices of differentiating variables def dIndices = term.partitionOfIndices[1] //extract just parent field from derivative // (e.g. f~(2)_{a bc}[p_a] -> f_a[p_a]) term = term.parentField //multiply by momentums // (e.g. f~(2)_{a bc}[p_a] -> I*p_b*I*p_c*f_a[p_a]) dIndices.each { indices -> term *= "I * $momentum $indices".t } } } //put transformed term to new product result << term } //result def r = result.build() //we must replace the last momentum with -(sum of other momentums) def rhs = '0'.t //sum generated momentums except last one momentums.eachWithIndex { momentum, c -> if (c != momentums.size() - 1) rhs -= "${momentum}_a".t } //replace last momentum with sum of others and return "${momentums[momentums.size() - 1]}_a = $rhs".t >> r } as Transformation The final transformation for a sum of terms is: //transform sum of products def fourierSum = { expr -> //expand all brackets and unfold powers of scalar tensors expr = (ExpandAndEliminate & PowerUnfold) >> expr //apply fourierProduct to each summand: expr = expr.collect { s -> fourierProduct >> s }.sum() //simplify and return: ExpandAndEliminate >> expr } as Transformation Consider, for example, Lagrangian of electromagnetic field : def emTensor = 'F_ab := A~(1)_ab[x_a] - A~(1)_ba[x_a]'.t def lagrangian = '-(1/4)*F_ab*F^ab - 1/(2*x)*(A~(1)_a^a[x_a])**2'.t def fourier = (fourierSum & Collect['A_a[p_a]'.t, Factor]) >> lagrangian println fourier > A_{a}[p0_{a}]*A^{c}[-p0_{a}]* ((1/2)*x**(-1)*(-1+x)*p0^{a}*p0_{c}-(1/2)*p0_{b}*p0^{b}*d^{a}_{c}) One can use this result in order to inverse the quadratic form in the Lagrangian (using [[documentation:ref:Reduce]] function) and obtain propagator: def q2 = 'K^a_c := (1/2)*x**(-1)*(-1+x)*p0^a*p0_c-(1/2)*p0_b*p0^b*d^a_c'.t def options = [ExternalSolver : [ Solver: 'Mathematica', Path : '/usr/local/bin']] def emProp = Reduce(['2*K^a_i*P^i_b = d^a_b'.t], ['P_ab'], options) println emProp > [[P_{ab} = (p0^{c}*p0_{c})**(-2)*(1-x)*p0_{a}*p0_{b}-(p0^{c}*p0_{c})**(-1)*g_{ab}]] which is a well known result: \[ \frac{1}{p^2} \left( -g_{ab} + (1-x)\frac{p_a p_b}{p^2}\right) \] Another example: let's find a propagator for a Fierz-Pauli Lagrangian in $D$ dimensions: \[ L = -\frac{1}{2} \partial_l h_{mn} \partial^l h^{mn} + \partial_m h_{nl} \partial^n h^{ml} - \partial^m h_{ml} \partial^l h^n_n + \frac{1}{2} \partial_l h^m_m \partial^l h^n_n -\frac{1}{2} m^2 \left (h_{mn} h^{mn} - h^a_a h^b_b \right) \] def FierzPauli = ''' -(1/2)*h~(1)_mnl[x_a]*h~(1)^mnl[x_a] + h~(1)_nlm[x_a]*h~(1)^mln[x_a] - h~(1)_ml^m[x_a]*h~(1)_n^nl[x_a] + (1/2)*h~(1)^m_ml[x_a]*h~(1)^n_n^l[x_a] -(1/2)*m**2*(h_mn[x_a]*h^mn[x_a] - h^a_a[x_a]*h^b_b[x_a]) '''.t fourier = (fourierSum & Collect['h_ab[p_a]'.t, Factor]) >> FierzPauli println fourier > h_{ml}[-p0_{a}]*h_{n}^{a}[p0_{a}]* (-p0^{l}*p0^{m}*d^{n}_{a}+p0^{m}*p0^{n}*d_{a}^{l} -(1/2)*(m**2+p0_{b}*p0^{b})*d_{a}^{l}*g^{nm} +(1/2)*(m**2+p0_{b}*p0^{b})*d_{a}^{n}*g^{lm}) Given this quadratic form, one can find a propagator in the following way: //quadratic form q2 = '''(-p0^{l}*p0^{m}*d^{n}_{a}+p0^{m}*p0^{n}*d_{a}^{l} -(1/2)*(m**2+p0_{b}*p0^{b})*d_{a}^{l}*g^{nm} +(1/2)*(m**2+p0_{b}*p0^{b})*d_{a}^{n}*g^{lm})'''.t //making symmetric with respect to field indices def p1 = '^ml'.si p1.symmetries.setSymmetric() def p2 = '^n_a'.si p2.symmetries.setSymmetric() q2 = (Symmetrize[p1] & Symmetrize[p2]) >> q2 //make a substitution "K^mln_a := $q2".t //the propagator symmetries addSymmetry 'P^ab_mn', [[0, 1]].p addSymmetry 'P^ab_mn', [[0, 2], [1, 3]].p options = [Transformations: 'd_n^n = D'.t, ExternalSolver : [ Solver: 'Mathematica', Path : '/usr/local/bin']] //equation def eq = '(K_abcd + K_cdab)*P^abmn = (d_c^m*d_d^n+d_c^n*d_d^m)/2'.t def grProp = Reduce([eq], ['P_abmn'], options) println grProp > [[P_{abmn} = -(1/2)*(m**2+p0^{e}*p0_{e})**(-1)*g_{an}*g_{bm} -(1/2)*(m**2+p0^{e}*p0_{e})**(-1)*g_{am}*g_{bn} -(1/2)*m**(-2)*(m**2+p0^{e}*p0_{e})**(-1)*p0_{a}*p0_{m}*g_{bn} -(1/2)*m**(-2)*(m**2+p0^{e}*p0_{e})**(-1)*p0_{b}*p0_{n}*g_{am} -(1/2)*m**(-2)*(m**2+p0^{e}*p0_{e})**(-1)*p0_{b}*p0_{m}*g_{an} -(1/2)*m**(-2)*(m**2+p0^{e}*p0_{e})**(-1)*p0_{a}*p0_{n}*g_{bm} +(m**2+p0^{e}*p0_{e})**(-1)*(-1+D)**(-1)*g_{ab}*g_{mn} -m**(-4)*(m**2+p0^{e}*p0_{e})**(-1)*(-1+D)**(-1)*(-2+D) *p0_{a}*p0_{b}*p0_{m}*p0_{n}+m**(-2)*(m**2+p0^{e}*p0_{e})**(-1) *(-1+D)**(-1)*p0_{m}*p0_{n}*g_{ab}+m**(-2)*(m**2+p0^{e}*p0_{e})**(-1) *(-1+D)**(-1)*p0_{a}*p0_{b}*g_{mn}]] Which is also a well known result that can be equivalently written as \[ P_{absl} = -\frac{1}{m^2 + p^2} \left( \frac{1}{2}(P_{as} P_{bl} + P_{al} P_{bs}) - \frac{1}{D-1} P_{ab} P_{sl} \right), \] where $P_{ab} = g_{ab} + p_a p_b / m^2$.