====== DiracOrder ====== ---- ====Description==== * ''%%DiracOrder%%'' brings all products of $\gamma$-matrices to alphabetical order * By default ''%% DiracOrder%%'' works in $D = 4$; for arbitrary $D$ one can use option ''%% DiracOrder[[Dimension: D]]%%'' * One can directly set trace of identity matrix (e.g. for dimensional regularisation): ''%% DiracOrder[[Dimension: D, TraceOfOne: 4]]%%'' * By default ''DiracOrder'' uses notation ''G_m'' for $\gamma_m$ and ''G5'' for $\gamma_5$. ''%% DiracOrder[[Gamma: G, Gamma5: G5]]%%'' specifies the notation for $\gamma_m$ and $\gamma_5$. ====Examples==== ---- Order product of $\gamma$-matrices: defineMatrices 'G_a', 'G5', Matrix1.matrix def dOrder = DiracOrder println dOrder >> 'G_b*G_a'.t > 2*g_{ba}-G_{a}*G_{b} println dOrder >> 'G_d*G_c*G_b*G_a'.t > G_{a}*G_{b}*G_{c}*G_{d}-2*G_{c}*G_{d}*g_{ab}+2*G_{b}*G_{d}*g_{ac}-2*G_{b}*G_{c}*g_{ad} -2*G_{a}*G_{d}*g_{bc}+4*g_{ad}*g_{bc}+2*G_{a}*G_{c}*g_{bd}-4*g_{ac}*g_{bd} -2*G_{a}*G_{b}*g_{cd}+4*g_{ab}*g_{cd} ---- All $\gamma_5$ will be shift right: defineMatrices 'G_a', 'G5', Matrix1.matrix def dOrder = DiracOrder println dOrder >> 'G5*G_b*G_a'.t > 2*G5*g_{ba}-G_{a}*G_{b}*G5 ---- Use another notation for $\gamma$-matrices: defineMatrices 'F_a', 'F5', Matrix1.matrix def dOrder = DiracOrder[[Gamma: 'F_a', Gamma5: 'F5']] println dOrder >> 'F_b*F_a'.t > 2*g_{ba}-F_{a}*F_{b} ====See also==== * Related guides: [[documentation:guide:applying_and_manipulating_transformations]], [[documentation:guide:Setting up matrix objects]], [[documentation:guide:list_of_transformations]] * Related transformations: [[documentation:ref:DiracSimplify]], [[documentation:ref:DiracTrace]], [[documentation:ref:SpinorsSimplify]] * JavaDocs: [[http://api.redberry.cc/redberry/1.1.9/java-api//cc/redberry/physics/feyncalc/DiracOrderTransformation.html| DiracOrderTransformation]] * Source code: [[https://bitbucket.org/redberry/redberry/src/tip/physics/src/main/java/cc/redberry/physics/feyncalc/DiracOrderTransformation.java|DiracOrderTransformation.java]]