====== Kronecker delta ======
----
====Basics====
The notation for Kronecked delta used in Redberry is ordinary ''d^a_b'' and similarly for other index types (''d^A_B'', ''d^\\alpha_\\beta'' etc.).  Kronecker delta are automatically symmetric:
println 'd^a_b - d_b^a'.t
   > 0
println 'd_A^B + d^B_A'.t
   > 2*d^B_A
Raising and lowering of Kronecker delta indices may produce [[documentation:ref:metric_tensor]]:
println ('{^a -> _a}'.mapping >> 'd^a_b'.t)
   > g_ab
The transformation that simplifies contractions with Kronecker deltas is [[documentation:ref:eliminatemetrics]]:
println EliminateMetrics >> 'd_a^m*F^ab*d_b^n'.t
   > F^mn
====Details====
In addition to ''d^a_b'' notation Redberry also uses ''g^a_b'', which is the notation for [[metric_tensor]] with one upper and one lower index. 
One can specify different name for Kronecker tensor by putting the following line in the beginning of the code:
//change default metric name
CC.current().setKroneckerName('f')
println EliminateMetrics >> 'f_a^m*F^ab*f_b^n'.t
   > F^mn
=====See also=====
  * Related guides: [[documentation:guide:types_of_indices_and_metric]]
  * Reference material: [[documentation:ref:metric_tensor]], [[documentation:ref:eliminatemetrics]]