====== LeviCivitaSimplify ======
----
====Description====
* ''LeviCivitaSimplify'' simplifies combinations of Levi-Civita tensors.
* ''LeviCivitaSimplify.euclidean[eps]'' simplifies combinations of Levi-Civita tensors (denoted as ''eps'') assuming that space is Euclidean.
* ''LeviCivitaSimplify.minkowski[eps]'' simplifies combinations of Levi-Civita tensors (denoted as ''eps'') assuming that metric has signature {+, -, -, ...}.
* ''LeviCivitaSimplify'' works in arbitrary dimensions: if one specified e.g. tensor ''eps_{abcd}'' as Levi-Civita tensor (using e.g. ''LeviCivitaSimplify.euclidean['eps_{abcd}'.t]'' ) then space dimension will be considered equal to 4 (number of Levi-Civita indices) and Kronecker trace will be substituted (i.e. '''d^n_n = 4'.t'' will be applied).
* When using ''LeviCivitaSimplify'' one should be ensured that symmetries of Levi-Civita tensor are already set up.
* ''%%LeviCivitaSimplify[[Simplifications: tr]]%%'' will apply additional simplifications ''tr'' to each processed product of Levi-Civita tensors and their contractions
* ''%%LeviCivitaSimplify[[OverallSimplifications: tr]]%%'' will apply additional simplifications ''tr'' to each processed transformed product of tensors
====Examples====
----
Simplify combinations of Levi-Civita tensors in dimension 3 in Euclidean space:
setAntiSymmetric 'e_abc'
println LeviCivitaSimplify.euclidean['e_abc'] >> 'e_abc*e^abd'.t
> 2*d^d_c
println LeviCivitaSimplify.euclidean['e_abc'] >> 'e_abc*e^abc'.t
> 6
def t = 'e_abc*e^amd*e_mnk*e^bnk'.t
println LeviCivitaSimplify.euclidean['e_abc'] >> t
> 4*d_{c}^{d}
----
Simplify combinations of Levi-Civita tensors in dimension 4 in Euclidean space:
setAntiSymmetric 'e_abcd'
def t = '4*e^h_d^fb*e_abch*e_e^d_gf'.t
println LeviCivitaSimplify.euclidean['e_abcd'] >> t
> 16*e_{eagc}
Simplify same expression in Minkowski space:
setAntiSymmetric 'e_abcd'
def t = '4*e^h_d^fb*e_abch*e_e^d_gf'.t
println LeviCivitaSimplify.minkowski['e_abcd'] >> t
> -16*e_{eagc}
----
Simplify combinations of Levi-Civita tensors in dimension 5 in Minkowski space:
setAntiSymmetric 'e_abcde'
def t = '''e^{m}_{g}^{kci}*e_{pdj}^{l}_{o}*e_{c}^{n}_{mi}^{p}
*e_{khnef}*e^{g}_{a}^{efd}*e_{l}^{hj}_{b}^{o}'''.t
println LeviCivitaSimplify.minkowski['e_abcde'] >> t
> 864*g_{ab}
----
Simplify expression where Levi-Civita is contracted with symmetric tensor:
setAntiSymmetric 'e_abcd'
def t = 'e_abcd*(A^a + C^a)*(A^b + C^b)'.t
println LeviCivitaSimplify.minkowski['e_abcd'] >> t
> 0
----
====See also====
* Related guides: [[documentation:guide:applying_and_manipulating_transformations]], [[documentation:guide:list_of_transformations]]
* Related transformations: [[documentation:ref:DiracTrace]], [[documentation:ref:UnitaryTrace]]
* JavaDocs: [[http://api.redberry.cc/redberry/1.1.9/java-api//cc/redberry/physics/feyncalc/LeviCivitaSimplifyTransformation.html| LeviCivitaSimplifyTransformation]]
* Source code: [[https://bitbucket.org/redberry/redberry/src/tip/physics/src/main/java/cc/redberry/physics/feyncalc/LeviCivitaSimplifyTransformation.java|LeviCivitaSimplifyTransformation.java]]