====== Compton scattering in QED ====== ---- ====Theory==== Let us consider Compton scattering in spinor QED. There are two Feynman diagrams: {{ :documentation:tutorials:qed.png?450 |}} The Feynman rules for spinor QED are: \begin{eqnarray} \mbox{electron propagator:}&\qquad& D(k) = \frac{-i\,\left(m + k_\mu \gamma^\mu \right)}{m^2 - k^2}, \\ \mbox{photon-electron-electron vertex:} &\qquad& V_\mu = -i\, e\, \gamma_ \mu, \end{eqnarray} where $e$ is an electron charge and $\gamma_\mu$ is Dirac matrix. Using these Feynman rules it is easy to write amplitudes corresponding to the above Feynman diagrams: \begin{eqnarray} \mbox{diagram a):}&\qquad& \mathcal M_a =\bar u(k_2)\, V_\mu \, \epsilon^\mu (p_2) \, D(k_1 + p_1) \, V_\nu \, \epsilon^\nu (p_1) \, u(k_1), \\ \mbox{diagram b):}&\qquad& \mathcal M_b =\bar u(k_2)\, V_\mu \, \epsilon^\mu (p_1) \, D(k_1 - p_2) \, V_\nu \, \epsilon^\nu (p_2) \, u(k_1), \end{eqnarray} where $u$ and $\bar u$ are electron wave function and its conjugation respectively and $\epsilon$ is a polarisation vector of photon. The final goal is squared matrix element summed over final and averaged over initial polarisations: \[ \frac{1}{4}\sum |\mathcal M|^2 = \frac{1}{4} \, \sum \, (\mathcal M_a + \mathcal M_b)^* (\mathcal M_a + \mathcal M_b) \] Sum over photon and electron polarizations: \begin{gather} \sum\, \epsilon_\mu(p)\, \epsilon_\nu(p) \,=\, - g_{\mu\nu}\\ \sum\, u(k) \, \bar u(k)\, = \,m\, +\, k^\mu\,\gamma_\mu \end{gather} The final standard thing is complex conjugation of matrix element. This can be done using the following obvious formula: \[ \left( \bar u(p_2)\, \gamma_{\alpha_1} \,\gamma_{\alpha_2}\,\dots \gamma_{\alpha_n} \, u(p_1) \right)^* = \bar u(p_1)\, \gamma_{\alpha_n} \,\gamma_{\alpha_{n-1}}\,\dots \gamma_{\alpha_1} \, u(p_2) \] After summing squared matrix element over polarisations, all combinations of gamma matrices will automatically transform to combinations of gamma matrices traces. ====Code==== The following code reproduces exactly same steps as one need to perform with paper and pencil to calculate squared matrix element of Compton scattering: //setting up matrices //gamma, vertex, propagator defineMatrices 'G_a', 'V_i', 'D[x_m]', Matrix1.matrix, //electron wave function 'vu[p_a]', Matrix1.vector, //its conjugation 'cu[p_a]', Matrix1.covector //vertex def V = 'V_m = -I*e*G_m'.t //electron propagator def D = 'D[p_m] = -I*(m + p_m*G^m)/(m**2 - p_m*p^m)'.t //diagram a) def Ma = 'cu[k2_m]*V_m*e^m[p2_m]*D[k1_m+p1_m]*V_n*e^n[p1_m]*vu[k1_m]'.t //diagram b) def Mb = 'cu[k2_m]*V_m*e^m[p1_m]*D[k1_m-p2_m]*V_n*e^n[p2_m]*vu[k1_m]'.t //total matrix element def M = Ma + Mb //substituting Feynman rules M = (V & D) >> M //list of Mandelstam and mass shell substitutions def mandelstam = setMandelstam( [p1_a: '0', k1_a: 'm', p2_a: '0', k2_a: 'm']) //simplify matrix element M = (ExpandAll & EliminateMetrics & mandelstam) >> M //conjugate matrix element def MC = 'vu[k1_m]*cu[k2_m] = vu[k2_m]*cu[k1_m]'.t >> M MC = (Conjugate & Reverse[Matrix1]) >> MC //squared matrix element def M2 = ExpandAll >> (M * MC / 4) //sum over photon polarizations M2 = 'e_m[p1_a]*e_n[p1_a] = -g_mn'.t >> M2 M2 = 'e_m[p2_a]*e_n[p2_a] = -g_mn'.t >> M2 //sum over electron polarizations M2 = 'vu[k2_m]*cu[k2_m] = m + k2^m*G_m'.t >> M2 M2 = 'vu[k1_m]*cu[k1_m] = m + k1^m*G_m'.t >> M2 //taking trace of gamma matrices M2 = DiracTrace['G_a'] >> M2 //simplify the result M2 = (ExpandAndEliminate & mandelstam) >> M2 //substitute space-time dimension M2 = 'd^i_i = 4'.t >> M2 //final simplifications M2 = 'u = 2*m**2 -s-t'.t >> M2 M2 = Factor >> M2 println M2 > 2*e**4*(2*m**8-t**3*m**2+t**3*s-8*s**2*t*m**2+3*t**2*m**4+4*t*m**4*s +4*s**3*t-2*t**2*m**2*s+2*s**4+3*s**2*t**2-8*s**3*m**2+12*s**2*m**4 -8*m**6*s)*(-t+m**2-s)**(-2)*(-m**2+s)**(-2) This code will print well known Klein-Nishina-Tamm formula: \begin{multline*} \frac{1}{4} \sum \,|\mathcal M|^2 \,=\, \frac{2\,e^4 }{(m^{2}-s)^2 (-m^{2}+s+t)^2} \, \times \\ \times \, \left( -8 s^{2} m^{2} t+4 s^{3} t+2 s^{4}+t^{3} s+2 m^{8}+4 m^{4} s t-m^{2} t^{3} \right. \\ \left.-2 m^{2} t^{2} s+3 m^{4} t^{2}-8 s^{3} m^{2}+12 s^{2} m^{4}+3 s^{2} t^{2}-8 m^{6} s \right) \end{multline*} ====See also==== * Related guides: [[documentation:guide:setting_up_matrix_objects]], [[documentation:guide:applying_and_manipulating_transformations]], [[documentation:guide:substitutions]] * Related tutorials: [[documentation:tutorials:compton_scattering_in_scalar_qed]], [[documentation:tutorials:compton_scattering_in_qcd]] * Related reference material: [[documentation:ref:setmandelstam]], [[documentation:ref:expandall]], [[documentation:ref:eliminatemetrics]], [[documentation:ref:reverse]], [[documentation:ref:diractrace]]