LeviCivitaSimplify simplifies combinations of Levi-Civita tensors. LeviCivitaSimplify.euclidean[eps] simplifies combinations of Levi-Civita tensors (denoted as eps) assuming that space is Euclidean. LeviCivitaSimplify.minkowski[eps] simplifies combinations of Levi-Civita tensors (denoted as eps) assuming that metric has signature {+, -, -, …}. LeviCivitaSimplify works in arbitrary dimensions: if one specified e.g. tensor eps_{abcd} as Levi-Civita tensor (using e.g. LeviCivitaSimplify.euclidean['eps_{abcd}'.t] ) then space dimension will be considered equal to 4 (number of Levi-Civita indices) and Kronecker trace will be substituted (i.e. 'd^n_n = 4'.t will be applied).LeviCivitaSimplify one should be ensured that symmetries of Levi-Civita tensor are already set up.LeviCivitaSimplify[[Simplifications: tr]] will apply additional simplifications tr to each processed product of Levi-Civita tensors and their contractionsLeviCivitaSimplify[[OverallSimplifications: tr]] will apply additional simplifications tr to each processed transformed product of tensorsSimplify combinations of Levi-Civita tensors in dimension 3 in Euclidean space:
setAntiSymmetric 'e_abc' println LeviCivitaSimplify.euclidean['e_abc'] >> 'e_abc*e^abd'.t
> 2*d^d_c
println LeviCivitaSimplify.euclidean['e_abc'] >> 'e_abc*e^abc'.t
> 6
def t = 'e_abc*e^amd*e_mnk*e^bnk'.t println LeviCivitaSimplify.euclidean['e_abc'] >> t
> 4*d_{c}^{d}
Simplify combinations of Levi-Civita tensors in dimension 4 in Euclidean space:
setAntiSymmetric 'e_abcd' def t = '4*e^h_d^fb*e_abch*e_e^d_gf'.t println LeviCivitaSimplify.euclidean['e_abcd'] >> t
> 16*e_{eagc}
Simplify same expression in Minkowski space:
setAntiSymmetric 'e_abcd' def t = '4*e^h_d^fb*e_abch*e_e^d_gf'.t println LeviCivitaSimplify.minkowski['e_abcd'] >> t
> -16*e_{eagc}
Simplify combinations of Levi-Civita tensors in dimension 5 in Minkowski space:
setAntiSymmetric 'e_abcde'
def t = '''e^{m}_{g}^{kci}*e_{pdj}^{l}_{o}*e_{c}^{n}_{mi}^{p}
*e_{khnef}*e^{g}_{a}^{efd}*e_{l}^{hj}_{b}^{o}'''.t
println LeviCivitaSimplify.minkowski['e_abcde'] >> t
> 864*g_{ab}
Simplify expression where Levi-Civita is contracted with symmetric tensor:
setAntiSymmetric 'e_abcd' def t = 'e_abcd*(A^a + C^a)*(A^b + C^b)'.t println LeviCivitaSimplify.minkowski['e_abcd'] >> t
> 0