Differences

This shows you the differences between two versions of the page.

Link to this comparison view

documentation:ref:levicivitasimplify [2015/09/22 18:28]
127.0.0.1 external edit
documentation:ref:levicivitasimplify [2015/11/21 12:33]
Line 1: Line 1:
-====== LeviCivitaSimplify ====== 
----- 
-====Description==== 
-  * ''​LeviCivitaSimplify''​ simplifies combinations of Levi-Civita tensors. ​ 
  
- 
-  * ''​LeviCivitaSimplify.euclidean[eps]''​ simplifies combinations of Levi-Civita tensors ​ (denoted as ''​eps''​) assuming that space is Euclidean. ​ 
- 
- 
-  * ''​LeviCivitaSimplify.minkowski[eps]''​ simplifies combinations of Levi-Civita tensors ​ (denoted as ''​eps''​) assuming that metric has signature {+, -, -, ...}.  
- 
- 
-  * ''​LeviCivitaSimplify''​ works in arbitrary dimensions: if one specified e.g. tensor ''​eps_{abcd}''​ as Levi-Civita tensor (using e.g. ''​LeviCivitaSimplify.euclidean['​eps_{abcd}'​.t]''​ ) then space dimension will be considered equal to 4 (number of Levi-Civita indices) and Kronecker trace will be substituted (i.e. '''​d^n_n = 4'​.t''​ will be applied). 
- 
- 
-  * When using ''​LeviCivitaSimplify''​ one should be ensured that symmetries of Levi-Civita tensor are already set up.  
-====Examples==== 
- 
----- 
-Simplify combinations of Levi-Civita tensors in dimension 3 in Euclidean space: 
-<sxh groovy; gutter: true> 
-setAntiSymmetric '​e_abc'​ 
-println LeviCivitaSimplify.euclidean['​e_abc'​] >> '​e_abc*e^abd'​.t 
-</​sxh>​ 
-<sxh plain; gutter: false> 
-   > 2*d^d_c 
-</​sxh>​ 
-<sxh groovy; gutter: true; first-line: 3> 
-println LeviCivitaSimplify.euclidean['​e_abc'​] >> '​e_abc*e^abc'​.t 
-</​sxh>​ 
-<sxh plain; gutter: false> 
-   > 6 
-</​sxh>​ 
-<sxh groovy; gutter: true; first-line: 4> 
-def t = '​e_abc*e^amd*e_mnk*e^bnk'​.t 
-println LeviCivitaSimplify.euclidean['​e_abc'​] >> t 
-</​sxh>​ 
-<sxh plain; gutter: false> 
-   > 4*d_{c}^{d} 
-</​sxh>​ 
- 
----- 
-Simplify combinations of Levi-Civita tensors in dimension 4 in Euclidean space: 
-<sxh groovy; gutter: true> 
-setAntiSymmetric '​e_abcd'​ 
-def t = '​4*e^h_d^fb*e_abch*e_e^d_gf'​.t 
-println LeviCivitaSimplify.euclidean['​e_abcd'​] >> t 
-</​sxh>​ 
-<sxh plain; gutter: false> 
-   > 16*e_{eagc} 
-</​sxh>​ 
-Simplify same expression in Minkowski space: 
-<sxh groovy; gutter: true> 
-setAntiSymmetric '​e_abcd'​ 
-def t = '​4*e^h_d^fb*e_abch*e_e^d_gf'​.t 
-println LeviCivitaSimplify.minkowski['​e_abcd'​] >> t 
-</​sxh>​ 
-<sxh plain; gutter: false> 
-   > -16*e_{eagc} 
-</​sxh>​ 
- 
----- 
-Simplify combinations of Levi-Civita tensors in dimension 5 in Minkowski space: 
-<sxh groovy; gutter: true> 
-setAntiSymmetric '​e_abcde'​ 
-def t = '''​e^{m}_{g}^{kci}*e_{pdj}^{l}_{o}*e_{c}^{n}_{mi}^{p} 
-           ​*e_{khnef}*e^{g}_{a}^{efd}*e_{l}^{hj}_{b}^{o}'''​.t 
-println LeviCivitaSimplify.minkowski['​e_abcde'​] >> t 
-</​sxh>​ 
-<sxh plain; gutter: false> 
-   > 864*g_{ab} 
-</​sxh>​ 
----- 
-Simplify expression where Levi-Civita is contracted with symmetric tensor: 
-<sxh groovy; gutter: true> 
-setAntiSymmetric '​e_abcd'​ 
-def t = '​e_abcd*(A^a + C^a)*(A^b + C^b)'​.t 
-println LeviCivitaSimplify.minkowski['​e_abcd'​] >> t 
-</​sxh>​ 
-<sxh plain; gutter: false> 
-   > 0 
-</​sxh>​ 
----- 
-====See also==== 
-  * Related guides: [[documentation:​guide:​applying_and_manipulating_transformations]],​ [[documentation:​guide:​list_of_transformations]] 
-  * Related transformations:​ [[documentation:​ref:​DiracTrace]],​ [[documentation:​ref:​UnitaryTrace]] 
-  * JavaDocs: [[http://​api.redberry.cc/​redberry/​1.1.8/​java-api//​cc/​redberry/​physics/​feyncalc/​LeviCivitaSimplifyTransformation.html| LeviCivitaSimplifyTransformation]] 
-  * Source code: [[https://​bitbucket.org/​redberry/​redberry/​src/​tip/​physics/​src/​main/​java/​cc/​redberry/​physics/​feyncalc/​LeviCivitaSimplifyTransformation.java|LeviCivitaSimplifyTransformation.java]]