setMandelstam5([k1:m1, k2:m2, k3:m3, k4:m4, k5:m5])
generates a list of generalised Mandelstam and mass shell substitutions for incoming particles with momentums k1
and k2
with masses m1
and m2
and outcoming particles with momentums k3
, k4
and k5
with masses m3
, m4
and m5
.setMandelstam5([k1:m1, k2:m2, k3:m3, k4:m4, k5:m5], s, t1, t2, u1, u2)
generates a list of Mandelstam substitutions with specified notation for generalised Mandelstam s, t1, t2, u1 and u2 variables.setMandelstam5
uses the following definition of Mandelstam variables:\begin{gather*} s = (p_1 + p_2)^2\\ t_1 = (p_1 - p_3)^2 \\ t_2 = (p_1 - p_4)^2 \\ u_1 = (p_2 - p_3)^2 \\ u_2 = (p_2 - p_4)^2 \\ \end{gather*}
Generate a list of Mandelstam and mass shell substitutions:
def mandelstam = setMandelstam5([k1_a: 'm1', k2_a: 'm2', k3_a: 'm3', k4_a: 'm4', k5_a: 'm5']) println mandelstam
> k1_{a}*k1^{a} = m1**2 > k2_{a}*k2^{a} = m2**2 > k3_{a}*k3^{a} = m3**2 > k4_{a}*k4^{a} = m4**2 > k5_{a}*k5^{a} = m5**2 > k2^{a}*k1_{a} = (1/2)*(-m1**2-m2**2+s) > k3^{a}*k1_{a} = (1/2)*(m1**2-t1+m3**2) > k1_{a}*k4^{a} = (1/2)*(m4**2+m1**2-t2) > k1_{a}*k5^{a} = (1/2)*(-m4**2-m1**2+t2+t1-m2**2-m3**2+s) > k2_{a}*k3^{a} = (1/2)*(-u1+m2**2+m3**2) > k2_{a}*k4^{a} = (1/2)*(m4**2-u2+m2**2) > k2_{a}*k5^{a} = (1/2)*(-m4**2-m1**2+u1+u2-m2**2-m3**2+s) > k3_{a}*k4^{a} = (1/2)*(m4**2+m5**2+2*m1**2-t2-u1-t1-u2+m3**2-s+2*m2**2) > k3_{a}*k5^{a} = (1/2)*(-m4**2-m1**2-m5**2+t2+u2-m2**2-m3**2+s) > k5^{a}*k4_{a} = (1/2)*(-m4**2-m1**2-m5**2+u1+t1-m2**2-m3**2+s)
Same when some particles are massless:
def mandelstam = setMandelstam5([k1_a: '0', k2_a: 'm2', k3_a: 'm3', k4_a: '0', k5_a: '0' ]) println mandelstam
> k1_{a}*k1^{a} = 0 > k2_{a}*k2^{a} = m2**2 > k3_{a}*k3^{a} = m3**2 > k4_{a}*k4^{a} = 0 > k5_{a}*k5^{a} = 0 > k2^{a}*k1_{a} = (1/2)*(s-m2**2) > k1_{a}*k3^{a} = (1/2)*(-t1+m3**2) > k4^{a}*k1_{a} = -(1/2)*t2 > k1_{a}*k5^{a} = (1/2)*(t1+s-m2**2+t2-m3**2) > k2_{a}*k3^{a} = (1/2)*(-u1+m2**2+m3**2) > k4^{a}*k2_{a} = (1/2)*(-u2+m2**2) > k2_{a}*k5^{a} = (1/2)*(u1+u2+s-m2**2-m3**2) > k4^{a}*k3_{a} = (1/2)*(-t1-u1-u2-s-t2+m3**2+2*m2**2) > k3_{a}*k5^{a} = (1/2)*(u2+s-m2**2+t2-m3**2) > k4_{a}*k5^{a} = (1/2)*(t1+u1+s-m2**2-m3**2)