There is only one Feynman diagram responsible for $e^+ e^- \to \mu^+ \mu^-$ process in the leading order. The following Redberry code produces squared matrix element of this process:
//setting up matrices //gamma, vertex defineMatrices 'G_a', 'V_i', Matrix1.matrix, //electron & muon wave functuins 'v[p_a]', 'u[p_a]', Matrix1.vector, //their conjugations 'cv[p_a]', 'cu[p_a]', Matrix1.covector //photon propagator def G = 'G_mn[k_a] = -I*g_mn/(k_a*k^a)'.t //vertex def V = 'V_i = -I*e*G_i'.t //matrix element def M = 'cv[p2_a]*V_i*u[p1_a]*G^ij[p1_a + p2_a]*cu[k1_a]*V_j*v[k2_a]'.t //substitute Feynman rules M = (V & G) >> M //list of Mandelstam & mass shell substitutions def mandelstam = setMandelstam( ['p1_m': 'me', 'p2_m': 'me', 'k1_m': 'mu', 'k2_m': 'mu']) //simplify matrix element M = (EliminateMetrics & ExpandDenominator & mandelstam) >> M //complex conjugation of matrix element def MC = Conjugate >> M MC = 'u[p1_a]*cv[p2_a] = v[p2_a]*cu[p1_a]'.t >> MC MC = 'v[k2_a]*cu[k1_a] = u[k1_a]*cv[k2_a]'.t >> MC //squared matrix element def M2 = ExpandAll >> (M * MC / 4) //sum over electron and muon polarizations M2 = 'u[p1_a]*cu[p1_a] = me + p1_a*G^a'.t >> M2 M2 = 'u[k1_a]*cu[k1_a] = mu + k1_a*G^a'.t >> M2 M2 = 'v[p2_a]*cv[p2_a] = -me + p2_a*G^a'.t >> M2 M2 = 'v[k2_a]*cv[k2_a] = -mu + k2_a*G^a'.t >> M2 //trace of gamma matrices M2 = DiracTrace['G_a'] >> M2 //simplifications M2 = (ExpandAndEliminate & mandelstam) >> M2 M2 = 'u = 2*(mu**2 + me**2) - s - t'.t >> M2 M2 = Factor >> M2 println M2
> 2*(2*mu**4+2*t**2+2*s*t+2*me**4-4*t*mu**2-4*me**2*t+4*me**2*mu**2+s**2)* s**(-2)*e**4Which is a well known formula: \[ \frac{2 e^{4}}{s^2}\, (4 m_u^{2} m_e^{2}+2 t^{2}+2 m_u^{4}+s^{2}+2 m_e^{4}-4 m_e^{2} t-4 m_u^{2} t+2 s t) \]