This is an old revision of the document!
DiracSimplify simplifies products of gamma matricesDiracSimplify works in $D = 4$; for arbitrary $D$ one can use option DiracSimplify[[Dimension: D]]DiracSimplify[[Dimension: D, TraceOfOne: 4]]DiracSimplify uses notation G_m for $\gamma_m$ and G5 for $\gamma_5$. DiracSimplify[G, G5] or DiracSimplify[[Gamma: G, Gamma5: G5]] specifies the notation for $\gamma_m$ and $\gamma_5$. DiracSimplify[[Simplifications: rules]] will apply additional simplification rules to each processed product of gammasSimplify different expressions:
defineMatrices 'G_a', 'G5', Matrix1.matrix def dSimplify = DiracSimplify println dSimplify >> 'G_a*G^a'.t
> 4
println dSimplify >> 'G_a*G_b*G^a'.t
> -2*G_{b}
println dSimplify >> 'G_a*G_b*G^a*G^b'.t
> -8
println dSimplify >> 'G5*G_a*G_b*G^a*G^b*G5*G5'.t
> -8*G5
println dSimplify >> 'G5*G_a*G_b*G^a*G5*G5'.t
> 2*G_{b}
Simplify in different dimensions:
defineMatrices 'G_a', 'G5', Matrix1.matrix def dSimplify = DiracSimplify[[Dimension: N]] println dSimplify >> 'G_a*G^a'.t
> N